На этой схеме Ns – вторичная обмотка силового трансформатора основного стабилизатора, на которой при его работе присутствуют прямоугольные импульсы напряжения с амплитудой, скажем, 10В (осциллограмма напряжения V1 на рисунке), периодом 20 мкс и длительностью 10 мкс. Если бы не было дросселя L1 и источника напряжения Vc=6В, то подаваемое в нагрузку напряжение составило бы 5В.
Положим, в начале сердечник дросселя L1 находился в состоянии насыщения, а потому этот дроссель свободно пропускал ток. В момент времени t=0 напряжение на выходе основного стабилизатора сменилось на отрицательное, напряжение на самом дросселе составляет 4В (V1-Vc=10В-6В=4В) и поддерживается таковым в течение всего времени прохождения отрицательного импульса, т.е. 10 мкс. Этим дроссель выводится из состояния насыщения в ненасыщенное состояние с большой индуктивностью, в котором он, как и любая индуктивность, препятствует протеканию тока. Поэтому, когда в момент времени t=10мкс на выходе основного стабилизатора появляется положительное напряжение +10В, ток через дроссель не течет, и напряжение V3 на выходе стабилизатора остается равным нулю. Однако теперь к дросселю приложено напряжение 10В, которое переводит его обратно в насыщенное состояние, но делает это уже за 4 мкс (это время зависит от длительности импульса отрицательной полярности и соотношения напряжений на дросселе: 10мкс*4В/10В = 4мкс). Соответственно, через время t3=14мкс дроссель переходит в насыщенное состояние и начинает свободно пропускать ток, а потому выходное напряжение V3 увеличивается до 10В. Но еще через 6 мкс, в момент времени t4=20мкс напряжение V1 на выходе основного стабилизатора падает до -10В, а потому выходное напряжение V3 падает до нуля.
Таким образом, если без дросселя L1 мы получали на нагрузке импульсы длительностью 10 мкс и периодом 20 мкс, то с ним период импульсов не изменился, а вот длительность упала до 6 мкс – что, как нетрудно подсчитать, приведет к падению напряжения с прежних 5В до 3В. При этом рассеиваемая в виде тепла мощность весьма мала – в ненасыщенном состоянии дроссель практически не проводит ток, в насыщенном же падение напряжения на нем близко к нулю, а потому и заметных потерь нет. Энергопотребление же от источника Vc определяется только материалом сердечника дросселя и количеством витков обмотки, а потому может быть сделано весьма малым, вне зависимости от того, какой ток требуется отдавать стабилизатору в нагрузку. Отмечу, что на практике это напряжение, определяющее длительность импульсов на выходе вспомогательного стабилизатора (а, следовательно, и его выходное напряжение), не фиксировано, а имеет обратную связь с выходом стабилизатора, что и позволяет поддерживать выходное напряжение постоянным практически вне зависимости от нагрузки.
Итак, мы имеем на руках стабилизатор напряжения с высоким КПД (а потому не требующий принудительного охлаждения), легко работающий в паре с основным стабилизатором и занимающий весьма мало места – даже дроссель L1 сравнительно невелик, а уж об остальных элементах и говорить нечего.
это про работу маг усилителя повразумительнее, чем было рассказано выше
На этой схеме Ns – вторичная обмотка силового трансформатора основного стабилизатора, на которой при его работе присутствуют прямоугольные импульсы напряжения с амплитудой, скажем, 10В (осциллограмма напряжения V1 на рисунке), периодом 20 мкс и длительностью 10 мкс. Если бы не было дросселя L1 и источника напряжения Vc=6В, то подаваемое в нагрузку напряжение составило бы 5В.
Положим, в начале сердечник дросселя L1 находился в состоянии насыщения, а потому этот дроссель свободно пропускал ток. В момент времени t=0 напряжение на выходе основного стабилизатора сменилось на отрицательное, напряжение на самом дросселе составляет 4В (V1-Vc=10В-6В=4В) и поддерживается таковым в течение всего времени прохождения отрицательного импульса, т.е. 10 мкс. Этим дроссель выводится из состояния насыщения в ненасыщенное состояние с большой индуктивностью, в котором он, как и любая индуктивность, препятствует протеканию тока. Поэтому, когда в момент времени t=10мкс на выходе основного стабилизатора появляется положительное напряжение +10В, ток через дроссель не течет, и напряжение V3 на выходе стабилизатора остается равным нулю. Однако теперь к дросселю приложено напряжение 10В, которое переводит его обратно в насыщенное состояние, но делает это уже за 4 мкс (это время зависит от длительности импульса отрицательной полярности и соотношения напряжений на дросселе: 10мкс*4В/10В = 4мкс). Соответственно, через время t3=14мкс дроссель переходит в насыщенное состояние и начинает свободно пропускать ток, а потому выходное напряжение V3 увеличивается до 10В. Но еще через 6 мкс, в момент времени t4=20мкс напряжение V1 на выходе основного стабилизатора падает до -10В, а потому выходное напряжение V3 падает до нуля.
Таким образом, если без дросселя L1 мы получали на нагрузке импульсы длительностью 10 мкс и периодом 20 мкс, то с ним период импульсов не изменился, а вот длительность упала до 6 мкс – что, как нетрудно подсчитать, приведет к падению напряжения с прежних 5В до 3В. При этом рассеиваемая в виде тепла мощность весьма мала – в ненасыщенном состоянии дроссель практически не проводит ток, в насыщенном же падение напряжения на нем близко к нулю, а потому и заметных потерь нет. Энергопотребление же от источника Vc определяется только материалом сердечника дросселя и количеством витков обмотки, а потому может быть сделано весьма малым, вне зависимости от того, какой ток требуется отдавать стабилизатору в нагрузку. Отмечу, что на практике это напряжение, определяющее длительность импульсов на выходе вспомогательного стабилизатора (а, следовательно, и его выходное напряжение), не фиксировано, а имеет обратную связь с выходом стабилизатора, что и позволяет поддерживать выходное напряжение постоянным практически вне зависимости от нагрузки.
Итак, мы имеем на руках стабилизатор напряжения с высоким КПД (а потому не требующий принудительного охлаждения), легко работающий в паре с основным стабилизатором и занимающий весьма мало места – даже дроссель L1 сравнительно невелик, а уж об остальных элементах и говорить нечего.
это про работу маг усилителя повразумительнее, чем было рассказано выше